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Abstract

Initializing growth and remodeling (G&R) simulations
requires defining a stress-free configuration of the tissue
from an in vivo, mechanobiologically equilibrated state.
This is complex in Constrained Mixture Models (CMMs),
where tissue is a mixture of constituents, each requiring a
unique natural, stress-free state. When assembled and pre-
stretched, these constituents must form a composite tissue
in mechanical equilibrium. In our framework, the pre-
stretches of collagen and muscle cells are prescribed,
while the natural configuration of elastin remains
unknown. Existing methods to solve this inverse problem
are often cumbersome, as they require intrusive
modifications to the computational solver. We provide a
simplified two-stage approach: first, we establish whole-
tissue mechanical equilibrium and subtract the stress
contribution from the prescribed collagen and muscle,
thereby isolating the stress state experienced by the elastin
network. Second, an iterative algorithm determines
elastin's stress-free state by running forward finite element
simulations and updating the guessed configuration until
the simulated deformation matches the in vivo geometry.
We verified our method against an analytical solution in a
cylindrical geometry. Consequently, we demonstrated its
applicability in an idealized left ventricle model, enabling
Sfuture mechanistic cardiac G&R studies.

1. Introduction

Growth and remodeling (G&R) in soft tissues can be
triggered by a loading perturbation of its preferred,
mechanical homeostatic state [1]. Constrained mixture
models (CMMs) are a mathematical framework in which
the G&R of soft tissues is modelled as the evolution of a
composite material where structurally significant
constituents, such as elastin, collagen and muscle cells,
each with their own stress-free state, are constrained to a
common loaded configuration, while mechanical
equilibrium is maintained at the tissue-level. [2]. CMMs
use the loaded in vivo state as the reference configuration
[1], which requires determining a deposition stretch for
each constituent. Deposition stretch or a pre-stretch is the
stretch from a constituent's stress-free state to the tissue’s
in vivo configuration. The pre-stresses resulting from pre-
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stretches govern the tissue’s mechanical homeostasis and
simultaneously ensure mechanical equilibrium. Pre-stretch
values for collagen and muscle cells are commonly
prescribed based on ex vivo experimental data from
vascular tissue [3]. However, quantifying elastin's pre-
stretch remains a challenging problem. Computational
inverse methods have been previously applied to estimate
the stress-free reference configuration at tissue-level [4,5]
as well as specifically for elastin [6]. These methods can
be broadly categorized by their fundamental approach. For
instance, the Backward Incremental Method (BIM) [5]
operates entirely on the in vivo geometry. It calculates pre-
stresses by incrementally loading the tissue and assigning
the resulting incremental stresses back onto the loaded in
vivo configuration; it does not explicitly estimate a unique
stress-free geometry. In contrast, reverse-forward methods
like the Augmented Iterative Method (AIM) [4] directly
solve for the stress-free (zero-pressure) configuration. The
algorithm iteratively refines an estimate of this stress-free
state. On each iteration, it runs a standard forward
simulation to load this guessed configuration, stopping
only when the simulated deformed state matches the true
in vivo geometry. The former approach is cumbersome as
it demands modifications to the numerical solver to
formulate the inverse problem, such as applying the
stresses from the forward deformations applied to the in
vivo configuration. In contrast, latter methods can leverage
standard finite element solvers in a straightforward
manner, without fundamental alterations to their core code.
Our goal is to develop a forward method to determine the
stress-free configuration of elastin that will allow
initialization of CMMs G&R simulations, ensuring
mechanical homeostasis. We have implemented and tested
this method using two geometries: a straight cylindrical
vessel and an idealized ventricle.

2. Methods

We introduced a two-staged computational framework
to numerically estimate the stress-free configuration of
elastin (Figure 1). This computational pipeline was
implemented using GIBBON MATLARB library [7] and the
finite element (FE) solver FEBio [8].
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Figure 1. Flowchart for the two-stage implementation.
Stage 1: elastin effective forces are computed. Stage 2:
AIM is run to find the stress-free configuration of elastin.
ds: surface element (€ (,); dv: volume element (€ ().

2.1.  Stage 1: Force balance in equilibrium

In this stage, we determine the stress experienced by the
elastin network under conditions of mechanobiological
equilibrium. We assume that in the current deformed
configuration of a biological organ (£1), with position of
every point represented by x , is subjected to traction (f)
on boundary 0Q,. The traction forces result from the
pressure (P;,,, ) applied at the boundary of the tissue.

Z:Pivo'ﬁ (1)

where 7 is a normal vector to the boundary (e.g., the
arterial lumen or ventricular endocardium).

In CMMs, the total stress accounts for the weighted sum
of the stresses carried by each of its individual constituents.
The balance of linear momentum at Vxyields the
condition V* (¢.0.(G.) + ¢p:0.(G.) + $ 01, (Gr)) =
0, where V- represents divergence operator, which gives
the net internal force arising tissue stresses, ¢; are
homeostatic constituent mass fractions and o; are the
Cauchy stresses of the load-bearing constituents ( i =
elastin (e), collagen (c) and muscle cells (m)) that arise
from the deposition stretch tensors G; = dx/0X;.
X, (€ Qq,) represents the natural configuration of the

constituent. For fibrous constituents such as collagen and
muscle cells, we prescribe known homeostatic stretches A},
and fiber directions af, and the deposition stretch tensor as

1

Cauchy stresses o, and a,, can thus be calculated and
translated to forces as V- (o, + 6,,) = f.+ f.,. Forx €
09, in mechanical equilibrium, the internal forces must
balance the traction forces on the boundary ¢ - n= Z, and
as we isolate the unknown stresses of elastin for x € 9(),
we obtain

G =Na,®a,+——=(I-ai®a)). (2

(6,+0.40,) N=t=>0, n=t—t—t, 3)

Thus, satisfying this relationship (Eq.3) and the traction
boundary condition (Eq. 1), we obtain the net nodal forces
that are experienced by elastin as f, = o, - 7.

2.2.  Stage 2: Prestressing algorithm

To determine the natural stress-free configuration of
elastin Q§ and ultimately determine elastin pre-stretches,
we coupled our approach with the Augmented Iterative
Method (AIM), previously described in a previous study
[4]. Briefly, the principle of this algorithm is to find a
reference configuration (stress-free, §) so that, when
subject to forces provided (f,), it deforms to (;,,. The
AIM iteratively updates a reference configuration QX** by
subtracting the per node displacement vector (R = x* —
x*,x* € Q;,,) between the wupdated deformed
configuration Q. and the in vivo configuration, which is
captured by a residual R* = ||R¥||. The algorithm stops
when the residual falls below a defined tolerance € (=
1073). Thus, iteratively running forward finite element FE
simulation § expressed in Equation 4, providing net nodal
forces f, we can obtain X¥ as the nodal coordinates for the
stress-free elastin configuration Q§:

x = s((x%0),f.) 4)
2.3.  Numerical verification

A cylindrical geometry was considered to verify the
prestressing algorithm against an analytical solution of a
stress-free configuration of elastin. We model an arterial
segment as a cylinder (length / =2.50 mm, inner diameter
r; = 0.647 mm, wall thickness h = 0.04 mm) discretized
into 1860 linear hexahedral elements. The tissue is
considered as a composite of elastin and collagen so that
the stress contribution of each is weighted by its mass
fraction ¢; (i = elastin, collagen). Collagen homeostatic
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pre-stretch A5 = 1.10 and a pressure of P;,, = 13.98 kPa

were prescribed. Only circumferential fibers were

considered for simplification of the analytical problem.

Collagen is modeled as in [1] with energy strain function
1

V.= — (exp(cz(C(G):d®a—1)*)—-1) ©)
4c,

Where C is the right Cauchy-Green deformation tensor,
d is the mean fiber direction and stiffness-like and non-
dimensional stiffening parameters c{ = 235 kPa and c§ =
4.08 kPa, respectively. Mass fraction ¢. = 0.33, and the
amorphous elastin matrix is modeled as a neo-Hookean
material by means of a simplified hyperelastic Ogden
strain energy function

N
Ci =m  sms . Am K
tpe=Zm—;@;"l+z;”l+,1;’“—3)+5(]—1)2 )
: i

i=1

with ¢§ = 1600 kPa, c§ = 0, K=4160kPa, m; = 2
and mass fraction ¢, = 0.67. We apply Dirichlet
boundary conditions to constrain the displacement in the
axial directions (u (x),=0) on one end of the cylinder.

To validate our numerical approach, we derived an
analytical solution for a thin-walled cylindrical tube under
internal pressure. For such a geometry, the circumferential
stress is given by o¢®= P-r;/h, where P is the internal
pressure, 1;is the internal radius, and h is the wall
thickness of the loaded in vivo geometry. By applying this
stress-strain relationship within the constitutive model for
the tissue, we solved for the unloaded geometry. This
provided the ground truth values for the internal radius
RfTand wall thickness HFT of the stress-free
configuration, which we verified against the same
parameters on the numerical solution.

2.4. Left ventricle prestressing

We considered an idealized left ventricle (LV) mesh
represented as a truncated ellipsoid (major epicardial
radius  a,,; = 20mm minor epicardial radius b,p; =
10mm, and uniform wall thickness h = 3mm) discretized
into 900 linear hexahedral elements. We modeled both
collagen and cardiomyocyte fibers as hyperelastic
materials with a preferred fiber orientation as in Eq. 5.
Collagen follows the four-fiber family material model,
which includes the contribution of circumferential, axial
and two diagonal (+45°) fiber directions [1] and material
parameters ¢y = 234.9 kPa, ¢5 = 4.08. Cardiomyocyte
fibers follow a helix angle that varies continuously from
+60° at the endocardium to —60° at the epicardium,
following energy strain as in Eq.5, and its material
parameters ¢]* = 261.4 kPa, ¢J* = 0.24 . Similarly to the
cylinder case, elastin is modeled as in Eq.6 with cf =
89.71 kPa, ¢$=0, k,=89.71-10% kPa, m; = 2.

Constituent mass fractions are equally distributed
$e=d. = ¢,. The fiber pre-stretches prescribed were
A5, = 1.062, and A}' = 1.10. Material parameters were
taken from vascular G&R model [1] and pre-stretches from
[6] from vascular tissue as well. A pressure of 16 kPa
(=120 mmHg) was prescribed on the endocardium
boundary. The AIM was run with Dirichlet conditions on
the nodes in the base in axial and circumferential directions
(U (x)g=0, u (x),= 0; x € 0Qyyq5c).

3. Results and discussion

3.1.  Cylinder case — Analytical solution

We assessed the agreement between our method and the
analytical solution. We assessed the agreement between
our method and the analytical solution. Using the forces
(f.) from Stage 1, we compared our numerical solution for
the inner radius (R;) and thickness (H;) in the unloaded
configuration against the theoretical values derived from
the analytical model for thin-walled cylinders.
Numerically, we obtain that R; = 5.90 - 107! mm and
H; = 4.16 - 1072 mm, while the analytical ground truth
values are RFT =590-10"'mm and HfT =4.17-
10~2mm, showing a match for the inner radius and a small
error (0.24%) for the thickness. The AIM reached a
minimum nodal error R* = 7.50-10~* mm (tolerance
€ = 1073mm) in 5 iterations. The agreement between our
numerical result and the analytical solution shows the
accuracy of the AIM implementation in solving the
mechanobiological equilibrium problem.

3.2.  Left ventricle prestress
We ran our algorithm on an idealized LV. In Figure 2,

the unstressed configuration of elastin obtained with AIM
is shown.

Figure 2. Cut view of the stress-free configuration of
elastin (red) and in vivo LV geometry (dotted) obtained
with the AIM implementation.
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The convergence of the AIM is shown in Figure 3. After
8 iterations, a minimum residual R¥ = 4 - 10™* mm was
achieved, which is the minimum nodal difference between
the original in vivo configuration and the updated in vivo
geometry. By defining elastin's baseline mechanical state,
our approach provides the reference needed to study
maladaptive G&R.
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Figure 3. Augmented Iterative Method (AIM) convergence
upon achieving minimum nodal error R¥ <€ for € =
10~ 3mm.

4. Limitations and future perspectives

This study has several limitations that provide a clear
pathway for future research. Firstly, it is worth noting that
the material parameters used were taken from the vascular
G&R model developed in [1], while collagen and
cardiomyocyte homeostatic pre-stretches were adopted
from [6], which were also derived from vascular tissue,
since CMM parameters for myocardium have not yet been
characterized. Hence, the presented results cannot be
considered physiologically relevant but rather a proof of
concept of a forward method. Secondly, the imposed
Dirichlet boundary conditions on the base of the ventricle,
while necessary for numerical stability, introduce artificial
constraints that prevent a perfectly satisfied global force
balance, potentially influencing the local stress field in the
elements at the base. Employing alternative conditions like
Robin-type boundaries (applying a compliant constraint
that balances force with displacement) in future studies
could mitigate this issue [6]. Additionally, comprehensive
benchmarking against other established pre-stress
algorithms using a wider range of material models will be
essential for rigorously verifying the method's robustness
and performance. Finally, to fully establish this
framework, future work will focus on applying the
algorithm to realistic, patient-specific geometries derived
from medical imaging.

5. Conclusions

By applying continuum mechanics principles, the
developed framework infers the constituent-specific
homeostatic forces that define mechanical equilibrium.
The coupling of this principle with a forward iterative
approach such as the AIM provides a robust methodology

to estimate the initial state of elastin in mechanobiological
equilibrium. We have tested our algorithm by comparing
our numerical solution with the known analytical solution
for a thin-walled cylinder, showing agreement between
them. Unlike backward methods that require complex
implementations within the solver, the presented method
should be easy to implement in any FE solver as it only
relies on iterative forward simulations until convergence is
achieved. While we have demonstrated its effectiveness on
idealized cardiovascular models - vessel and a left
ventricle- our methodology is a general approach
applicable to any 3D geometry to enable the study of CMM
G&R in a wide range of soft tissues.
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