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Abstract 

Initializing growth and remodeling (G&R) simulations 
requires defining a stress-free configuration of the tissue 
from an in vivo, mechanobiologically equilibrated state. 
This is complex in Constrained Mixture Models (CMMs), 
where tissue is a mixture of constituents, each requiring a 
unique natural, stress-free state. When assembled and pre-
stretched, these constituents must form a composite tissue 
in mechanical equilibrium. In our framework, the pre-
stretches of collagen and muscle cells are prescribed, 
while the natural configuration of elastin remains 
unknown. Existing methods to solve this inverse problem 
are often cumbersome, as they require intrusive 
modifications to the computational solver. We provide a 
simplified two-stage approach: first, we establish whole-
tissue mechanical equilibrium and subtract the stress 
contribution from the prescribed collagen and muscle, 
thereby isolating the stress state experienced by the elastin 
network. Second, an iterative algorithm determines 
elastin's stress-free state by running forward finite element 
simulations and updating the guessed configuration until 
the simulated deformation matches the in vivo geometry. 
We verified our method against an analytical solution in a 
cylindrical geometry. Consequently, we demonstrated its 
applicability in an idealized left ventricle model, enabling 
future mechanistic cardiac G&R studies. 
 
1. Introduction 

Growth and remodeling (G&R) in soft tissues can be 
triggered by a loading perturbation of its preferred, 
mechanical homeostatic state [1]. Constrained mixture 
models (CMMs) are a mathematical framework in which 
the G&R of soft tissues is modelled as the evolution of a 
composite material where structurally significant 
constituents, such as elastin, collagen and muscle cells, 
each with their own stress-free state, are constrained to a 
common loaded configuration, while mechanical 
equilibrium is maintained at the tissue-level. [2]. CMMs 
use the loaded in vivo state as the reference configuration 
[1], which requires determining a deposition stretch for 
each constituent. Deposition stretch or a pre-stretch is the 
stretch from a constituent's stress-free state to the tissue’s 
in vivo configuration. The pre-stresses resulting from pre-

stretches govern the tissue’s mechanical homeostasis and 
simultaneously ensure mechanical equilibrium. Pre-stretch 
values for collagen and muscle cells are commonly 
prescribed based on ex vivo experimental data from 
vascular tissue [3]. However, quantifying elastin's pre-
stretch remains a challenging problem. Computational 
inverse methods have been previously applied to estimate 
the stress-free reference configuration at tissue-level [4,5] 
as well as specifically for elastin [6]. These methods can 
be broadly categorized by their fundamental approach. For 
instance, the Backward Incremental Method (BIM) [5] 
operates entirely on the in vivo geometry. It calculates pre-
stresses by incrementally loading the tissue and assigning 
the resulting incremental stresses back onto the loaded in 
vivo configuration; it does not explicitly estimate a unique 
stress-free geometry. In contrast, reverse-forward methods 
like the Augmented Iterative Method (AIM) [4] directly 
solve for the stress-free (zero-pressure) configuration. The 
algorithm iteratively refines an estimate of this stress-free 
state. On each iteration, it runs a standard forward 
simulation to load this guessed configuration, stopping 
only when the simulated deformed state matches the true 
in vivo geometry. The former approach is cumbersome as 
it demands modifications to the numerical solver to 
formulate the inverse problem, such as applying the 
stresses from the forward deformations applied to the in 
vivo configuration. In contrast, latter methods can leverage 
standard finite element solvers in a straightforward 
manner, without fundamental alterations to their core code. 
Our goal is to develop a forward method to determine the 
stress-free configuration of elastin that will allow 
initialization of CMMs G&R simulations, ensuring 
mechanical homeostasis. We have implemented and tested 
this method using two geometries: a straight cylindrical 
vessel and an idealized ventricle. 

 
2. Methods 

We introduced a two-staged computational framework 
to numerically estimate the stress-free configuration of 
elastin (Figure 1). This computational pipeline was 
implemented using GIBBON MATLAB library [7] and the 
finite element (FE) solver FEBio [8]. 
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Figure 1. Flowchart for the two-stage implementation. 
Stage 1: elastin effective forces are computed. Stage 2: 
AIM is run to find the stress-free configuration of elastin. 
ds: surface element (∈ 	Ω!); dv: volume element (∈ 	Ω	). 
 
2.1. Stage 1: Force balance in equilibrium 

In this stage, we determine the stress experienced by the 
elastin network under conditions of mechanobiological 
equilibrium. We assume that in the current deformed 
configuration of a biological organ (Ω), with position of 
every point represented by 𝒙 , 	is subjected to traction (𝒕⃗) 
on boundary 𝜕Ω! .	 The traction forces result from the 
pressure (𝑃#$%	) applied at the boundary of the tissue. 

 
𝒕⃗ = 𝑃#$%	 ⋅ 𝒏//⃗ (1) 

 
 where 𝒏//⃗  is a normal vector to the boundary (e.g., the 

arterial lumen or ventricular endocardium).  
In CMMs, the total stress accounts for the weighted sum 

of the stresses carried by each of its individual constituents. 
The	 balance of linear momentum at ∀𝒙	yields the 
condition 𝛻 ∙ (𝜙&𝛔&(𝑮&) + 𝜙'𝛔'(𝑮') + 𝜙(𝛔((𝑮()) =
𝟎, where ∇· represents divergence operator, which gives 
the net internal force arising tissue stresses, 𝜙# are 
homeostatic constituent mass fractions and 𝝈𝒊 are the 
Cauchy stresses of the load-bearing constituents ( 𝑖 =
	elastin (e), collagen (c) and muscle cells (m)) that arise 
from the deposition stretch tensors 𝑮# = 	𝜕𝒙/𝜕𝑿#. 
𝑿*(∈ 	Ω+,*) represents the natural configuration of the 

constituent. For fibrous constituents such as collagen and 
muscle cells, we prescribe known homeostatic stretches 𝜆-#  
and fiber directions 𝒂+#  and the deposition stretch tensor as  

 

𝑮# = 𝜆-# 𝒂+# ⊗𝒂+# +
1

F𝜆-#
G𝑰 − 𝒂+# ⊗𝒂+# J. (2) 

 
Cauchy stresses 𝝈'	 and 𝝈( can thus be calculated and 

translated to forces as ∇ ∙ (𝝈' + 𝝈() = 	𝒇' + 𝒇(. For 𝒙 ∈
𝜕Ω! in mechanical equilibrium, the internal forces must 
balance the traction forces on the boundary σ · 𝒏//⃗  = 𝒕⃗, and 
as we isolate the unknown stresses of elastin for 𝒙 ∈ 𝜕Ω! 
we obtain  
	

(𝛔& + 𝛔' + 𝛔()	 · 𝒏//⃗ 	 = 	𝒕⃗ 	⇒ 	𝛔&	 · 𝒏//⃗ = 𝒕⃗	 − 𝒕⃗𝒄 − 𝒕⃗𝒎	 (3) 
 
Thus, satisfying this relationship (Eq.3) and the traction 

boundary condition (Eq. 1), we obtain the net nodal forces 
that are experienced by elastin as  𝒇& = 𝛔&	 · 𝒏//⃗ .   

 
2.2. Stage 2: Prestressing algorithm 

    To determine the natural stress-free configuration of 
elastin Ω+& and ultimately determine elastin pre-stretches, 
we coupled our approach with the Augmented Iterative 
Method (AIM), previously described in a previous study 
[4]. Briefly, the principle of this algorithm is to find a 
reference configuration (stress-free, Ω+&) so that, when 
subject to forces provided (𝒇&), it deforms to Ω012. The 
AIM iteratively updates a reference configuration Ω+345 by 
subtracting the per node displacement vector (𝓡𝒌 = 𝒙3 −
𝒙∗, 𝒙∗ ∈ 	Ω#$%	) between the updated deformed 
configuration Ω8 and the in vivo configuration, which is 
captured by a residual ℛ3 = ‖𝑹3‖. The algorithm stops 
when the residual falls below a defined tolerance 𝜖 (=
109:). Thus, iteratively running forward finite element FE 
simulation 𝓢 expressed in Equation 4, providing net nodal 
forces 𝒇& we can obtain 𝑿&3 as the nodal coordinates for the 
stress-free elastin configuration Ω+&: 
 

𝒙3 = 𝓢XG𝑿𝒆𝒌, 𝟎J, 𝒇&Y	 (4) 
 
2.3. Numerical verification 

A cylindrical geometry was considered to verify the 
prestressing algorithm against an analytical solution of a 
stress-free configuration of elastin. We model an arterial 
segment as a cylinder (length l = 2.50 mm, inner diameter 
r0 = 0.647	mm, wall thickness h = 0.04	mm) discretized 
into 1860 linear hexahedral elements. The tissue is 
considered as a composite of elastin and collagen so that 
the stress contribution of each is weighted by its mass 
fraction ϕ0 (i = elastin, collagen). Collagen homeostatic 
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pre-stretch 𝜆-' = 1.10 and a pressure of 𝑃#$% = 13.98	kPa 
were prescribed. Only circumferential fibers were 
considered for simplification of the analytical problem. 
Collagen is modeled as in [1] with energy strain function 

 
𝛹! = 	

𝑐"
4𝑐#

	(exp(𝑐#(𝐂	(𝐆%): 𝒂//⃗ 	Ä	𝒂//⃗ − 1)#) − 1)	 (5) 

  
Where C is the right Cauchy-Green deformation tensor, 

𝒂//⃗  is the mean fiber direction and stiffness-like  and non-
dimensional stiffening parameters c5< = 235	kPa and c=< =
4.08	kPa, respectively.  Mass fraction ϕ< = 0.33, and the 
amorphous elastin matrix is modeled as a neo-Hookean 
material by means of a simplified hyperelastic Ogden 
strain energy function 

 

						𝛹& =	4
𝑐'
𝑚'
# (𝜆7"

(! +
)

'*"

𝜆7#
(! + 𝜆7+

(! − 3) +
𝐾
2
(𝐽 − 1)#									(6) 

 
with c5> = 1600	kPa,	 c=> = 0,	 K = 4160	kPa,	 m5 = 2	

and mass fraction ϕ> = 0.67. We apply Dirichlet 
boundary conditions to constrain the displacement in the 
axial directions (𝒖 (𝒙)𝒛=	𝟎) on one end of the cylinder.  

To validate our numerical approach, we derived an 
analytical solution for a thin-walled cylindrical tube under 
internal pressure. For such a geometry, the circumferential 
stress is given by σθ=	P·r0/ℎ, where P is the internal 
pressure, 𝑟# 	is the internal radius, and ℎ is the wall 
thickness of the loaded in vivo geometry. By applying this 
stress-strain relationship within the constitutive model for 
the tissue, we solved for the unloaded geometry. This 
provided the ground truth values for the internal radius  
𝑅#AB	and wall thickness 𝐻#AB of the stress-free 
configuration, which we verified against the same 
parameters on the numerical solution.  

 
2.4. Left ventricle prestressing 

We considered an idealized left ventricle (LV) mesh 
represented as a truncated ellipsoid (major epicardial 
radius 𝑎&C# = 20mm minor epicardial radius 𝑏&C# =
10mm, and uniform wall thickness ℎ = 3mm) discretized 
into 900 linear hexahedral elements. We modeled both 
collagen and cardiomyocyte fibers as hyperelastic 
materials with a preferred fiber orientation as in Eq. 5. 
Collagen follows the four-fiber family material model, 
which includes the contribution of circumferential, axial 
and two diagonal (±45º) fiber directions [1] and material 
parameters 𝑐5' = 234.9 kPa, 𝑐=' = 4.08. Cardiomyocyte 
fibers follow a helix angle that varies continuously from 
+60º at the endocardium to −60º at the epicardium, 
following energy strain as in Eq.5, and its material 
parameters 𝑐5( = 261.4 kPa, 𝑐=( = 0.24	. Similarly to the 
cylinder case, elastin is modeled as in Eq.6 with c5> =
89.71 kPa, c=> = 0, k> = 89.71 · 10: kPa, m5 = 2. 

Constituent mass fractions are equally distributed 
ϕ>=	ϕ< = ϕD. The fiber pre-stretches prescribed were 
𝜆-' = 1.062, and 𝜆-( = 1.10.	Material parameters were 
taken from vascular G&R model [1] and pre-stretches from 
[6] from vascular tissue as well. A pressure of 16 kPa 
(=120 mmHg) was prescribed on the endocardium 
boundary. The AIM was run with Dirichlet conditions on 
the nodes in the base in axial and circumferential directions 
(𝒖	(𝒙)𝜽=	𝟎,	 𝒖 (𝒙)𝒛=		𝟎; 	𝒙 ∈ 𝜕ΩFGH&). 

 
3. Results and discussion 

3.1. Cylinder case – Analytical solution 

    We assessed the agreement between our method and the 
analytical solution. We assessed the agreement between 
our method and the analytical solution. Using the forces 
(𝒇&) from Stage 1, we compared our numerical solution for 
the inner radius (Rᵢ) and thickness (Hᵢ) in the unloaded 
configuration against the theoretical values derived from 
the analytical model for thin-walled cylinders. 
Numerically, we obtain that R0 = 5.90 · 1095	mm and 
H0 = 4.16 · 109=	mm, while the analytical ground truth 
values are 𝑅#AB = 5.90 · 1095mm and 𝐻#AB = 4.17 ·
109=mm, showing a match for the inner radius and a small 
error (0.24%) for the thickness. The AIM reached a 
minimum nodal error ℛ3 = 7.50 · 109I mm (tolerance 
𝜖 = 109:mm) in 5 iterations. The agreement between our 
numerical result and the analytical solution shows the 
accuracy of the AIM implementation in solving the 
mechanobiological equilibrium problem.  

 
3.2.  Left ventricle prestress 

We ran our algorithm on an idealized LV. In Figure 2, 
the unstressed configuration of elastin obtained with AIM 
is shown. 

 

 
Figure 2. Cut view of the stress-free configuration of 
elastin (red) and in vivo LV geometry (dotted) obtained 
with the AIM implementation. 

𝛺𝒊𝒗𝒐
𝛺𝟎𝒆
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The convergence of the AIM is shown in Figure 3. After 
8 iterations, a minimum residual ℛ3 = 4 · 109I mm was 
achieved, which is the minimum nodal difference between 
the original in vivo configuration and the updated in vivo 
geometry. By defining elastin's baseline mechanical state, 
our approach provides the reference needed to study 
maladaptive G&R. 

 
Figure 3. Augmented Iterative Method (AIM) convergence 
upon achieving minimum nodal error  𝓡𝒌 ≤ 𝝐  for 𝝐 =
𝟏𝟎9𝟑mm. 

4. Limitations and future perspectives 

This study has several limitations that provide a clear 
pathway for future research. Firstly, it is worth noting that 
the material parameters used were taken from the vascular 
G&R model developed in [1], while collagen and 
cardiomyocyte homeostatic pre-stretches were adopted 
from [6], which were also derived from vascular tissue, 
since CMM parameters for myocardium have not yet been 
characterized. Hence, the presented results cannot be 
considered physiologically relevant but rather a proof of 
concept of a forward method. Secondly, the imposed 
Dirichlet boundary conditions on the base of the ventricle, 
while necessary for numerical stability, introduce artificial 
constraints that prevent a perfectly satisfied global force 
balance, potentially influencing the local stress field in the 
elements at the base. Employing alternative conditions like 
Robin-type boundaries (applying a compliant constraint 
that balances force with displacement) in future studies 
could mitigate this issue [6]. Additionally, comprehensive 
benchmarking against other established pre-stress 
algorithms using a wider range of material models will be 
essential for rigorously verifying the method's robustness 
and performance. Finally, to fully establish this 
framework, future work will focus on applying the 
algorithm to realistic, patient-specific geometries derived 
from medical imaging. 

 
5. Conclusions 

By applying continuum mechanics principles, the 
developed framework infers the constituent-specific 
homeostatic forces that define mechanical equilibrium. 
The coupling of this principle with a forward iterative 
approach such as the AIM provides a robust methodology 

to estimate the initial state of elastin in mechanobiological 
equilibrium. We have tested our algorithm by comparing 
our numerical solution with the known analytical solution 
for a thin-walled cylinder, showing agreement between 
them. Unlike backward methods that require complex 
implementations within the solver, the presented method 
should be easy to implement in any FE solver as it only 
relies on iterative forward simulations until convergence is 
achieved. While we have demonstrated its effectiveness on 
idealized cardiovascular models   - vessel and a left 
ventricle- our methodology is a general approach  
applicable to any 3D geometry to enable the study of CMM 
G&R in a wide range of soft tissues. 
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